

Integrity ★ Service ★ Excellence

High Reliability Electronics Virtual Center (HiREV) Overview and Status

NEPP Electronic Technology Workshop

12 June 2013

Christopher Bozada
Sensors Directorate
Air Force Research Laboratory

Outline

- HiREV Mission & Strategy
- HiREV Team
- HiREV Status
- Technology Roadmap
- Reliability Science
- Summary

HiREV Mission

Ensure timely delivery of independent, high-fidelity lifetime estimates for electronic device technologies and their corresponding underlying physics and chemistry of degradation and failure to enable their qualification for critical DoD and NSS applications.

HiREV Approach

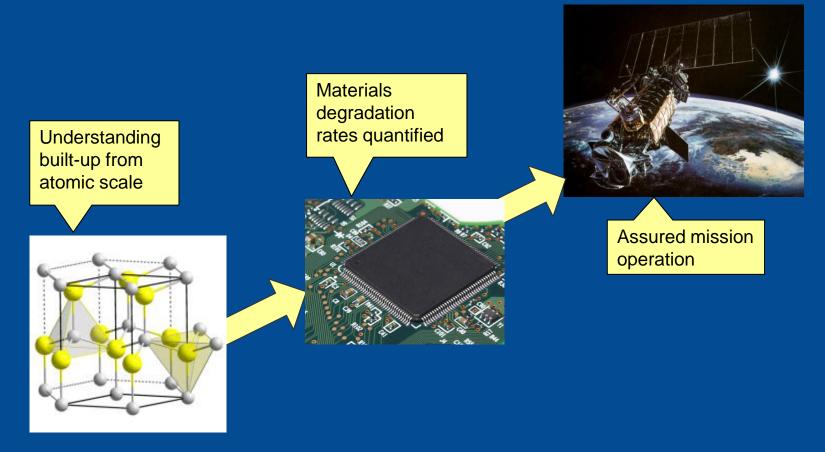
- Forecast emerging electronics technologies and opportunities; assess needs; advocate & perform prequalification studies
- Assess current qualification practices; identify and address shortfalls
- Create and maintain partnerships and capabilities with government, industry and academia through a virtual center concept

HiREV Leadership Team

Space Vehicles
Materials and Manufacturing
Sensors

System Planning, Engineering & Quality Physical Sciences Laboratories Electronics and Sensors Division

Defense Microelectronics Activity


NASA

High Level Team Strategy

Insure knowledge is preserved in updated lifetime models, standards, practices, processes & techniques for industry – encourage and sponsor industry participation

Refined ConOps

- Technology Forecast
 Poll acquisition, prime and manufacturer communities
- Reliability Science
 Physics and chemistry based models, tools and techniques
- Prequalification
 Lit Reviews, test chip design and fab, testing, analysis, etc
- Information Sharing
 Data, measurements, techniques, models, standards, guidelines, etc

Technology Forecasting

- Goal Anticipate the needs of the NSS acquisition community
 - Prequalify before an insertion decision is finalized
 - Don't duplicate what is being done or already has been done
 - o Identify knowledge gaps

Approach

- Develop a comprehensive electronics parts list for one relevant system in each domain of interest (Space/Air/Ground)
- Develop a comprehensive list of electronic components by device technology effort/foundry, e.g. 9LP, 9SF, etc.
- Gather available information from the community on the electronic device technologies including test results, projections, roadmaps and schedules

Status

- Initial Technology Roadmap developed
- Aerospace TOR published; annual updates planned

Technology Roadmap

	Near Term 2012	Mid Term 2012-2014	Longer Term > 2015
Digital	 CMOS (150, 90, 65nm) Xilinx V-4 FPGA (90nm) HNY HX5000 (150nm) NG SONOS EEPROM 	CMOS (90, 65, 45nm)Xilinx V-5 FPGA (65nm)MRAM (HNY, Aeroflex)	 CMOS (32, 28, 22nm) Xilinx V-7 FPGA (28nm) BAE/Achronix (150nm) CNTs Freescale 45nm SOI
Analog/ Mixed Signal	■SERDES (HNY/BAE 150nm)	■CMOS (90, 65, 45nm) ■SiGe BiCMOS (130, 90nm)	■CMOS (32nm) ■InP HBT
Power		■GaN ■SiC	■GaN ■SiC

^{*}Packaging for all new technologies

HiREV Reliability Science Focus

- Beyond thermally accelerated life tests:
 - Alternate stressors
 - Multiple stressors
 - Detailed statistical analysis beyond first order fits of the data
- Materials Characterization at the nanoscale tool development and application
- Improved models of device performance and degradation
- University Foundry Run: GaN HEMT devices and test structures specifically for university studies

HiREV Reliability Science Performers

Air Force Institute of Technology: Defect Studies & Radiation Effects

Arizona State University: Electron Microscopy, Modeling

Georgia Institute of Technology: Thermometry, Strain Behavior, Modeling

lowa State University:
 Reliability Statistics

Naval Postgraduate School: GaN HEMT Modeling (Transient Behavior)

Purdue University: Multi-Scale Device Modeling; Transient

Device Thermography

SUNY Albany: End of Life Modeling Analysis

Vanderbilt University:
 Reliability and Radiation Effects

Reliability MURIs (Close Interaction):

AFOSR – University of Florida

 ONR – UC-Santa Barbara led (MIT, CMU, Ohio State U, NCSU, U. Michigan, Bristol and Vanderbilt)

Prequalification

- Goal Determine whether or not a specific device technology is "qualifiable" for specific missions
- Approach
 - Develop quantitative analysis techniques to evaluate current practices cost/benefits/risks
 - Currently evaluating JEP 118 (GaAs FETs and Mil Perf 38535 Appendix H)
 - Next on list is Mil Handbook 217
 - Develop and refine prequalification checklist Initial checklist complete
 - Use checklist to survey existing knowledge
 - Develop cost and schedule to validate knowledge and gather missing knowledge
 - Perform prequalification studies on customer demand
 - Efforts are similar to Root Cause Investigations
 - Provide capability to perform multiple studies simultaneously
 - Support DARPA Integrity and Reliability of Integrated Circuits (IRIS)

Summary

- HiREV Center has expanded the core team and continues to make contributions
- Progress in multiple areas:
 - Information Sharing Lessons Learned
 - Prequalification approach refined
 - Preliminary Technology Forecast Completed
 - Multiple Reliability Science Advances
- DARPA IRIS (Integrity and Reliability of Integrated CircuitS) program is a key activity

